变频电机为什么增装编码器呢?
禹盟自动化科技 发布时间:2019-8-7 浏览:1789次
变频电机驱动没有位置环。变频电机上的编码器是“速度编码器”,是为精确计算电机反电动势的速度反馈。电机反电动势与电机转子转速成正比。
由于伺服电机的普及使用,现在很多控制的思路都会向伺服电机比较与衡量,尽管变频控制早于伺服控制。伺服电机的控制是位置环、速度环、力矩环的闭环控制,这在永磁同步电机的设计原理上就有体现,驱动电流的相位与转子的位置同步,伺服电机的驱动已确定了位置环是“天然”闭环的。而在变频电机驱动是异步的,有时也称为异步电机,即使加上电机后部编码器的反馈,它也只有速度环,没有在电机驱动上的“位置环”,因此这个编码器就是“速度编码器”。
变频电机编码器作为速度编码器,它主要的目的是作为电机转子反电动势的计算,以达到对应当前电机反电动势的精准驱动控制。
当驱动电流启动电机转子旋转,根据电磁定律,当磁场变化时,附近的导体会产生感应电动势,其方向符合法拉第定律和楞次定律,与原先加在线圈两端的电压正好相反。这个电压就是反电动势。
以能量守恒法则:电机驱动器送出的电能=机械能(驱动电流与反电动势平衡)+损耗(电机电流阻抗热损、机械阻力、配阻箱热损等)。
电机在启动加速时,必须达到驱动电流产生的旋转势能大于反电动势能(矢量为正),但也不能过大,过大的电流是损耗在电机热能和配阻箱热能上的。速度编码器的反馈提供给变频器计算反电动势,以使驱动旋转势能正好大于反电动势能。
每台电机有各自的特性常数,反电动势与电机转子转速和这个特性常数成正比关系。
反电动势=特性常数X转子转速
安装有编码器的变频电机,编码器信号反馈给变频驱动器,计算出当前的电机反电动势,变频驱动器给出合理的控制电流。
当编码器反馈给变频器的信号计算出电机转速偏低,远低于设计的对应驱动电流下电机应该达到的旋转速度,此时称为电机驱动“失速”,变频电机失速意味着反电动势偏低,电能都用到了热损上去了(反电动势偏低,电压分配给阻抗上),此时电机线圈电阻抗低,电流增大而电机发烫,或者变频器电流偏大,有可能就会烧损电机或者变频器,这时需要失速保护,而停止电机驱动。
对应这种可能出现的变频电机失速,早期常用的方法就是把电机功率和变频器功率设计的更大,要有足够的大,有足够的余量对应大电流热损,防止烧坏电机或者变频器器件,并且需要配备一个很大的配电阻箱,过电压分配将瞬间启动时的过余能量在配电阻箱平衡。这就造成电机设计的体积大,变频器效率低的浪费。而且在电机驱动加速时浪费了很多能量在热损上。
变频电机增加安装编码器,就可以提高电机与变频器在启动时的能量效率,减少电机与变频器损坏的可能。
一个比喻,开车的司机都知道,车辆从低速启动时是最耗油的,如果是上坡加速更加耗油。电机驱动也是一样的道理,电机的能量损耗大部分是在启动加速时。变频电机如果想要真正达到节能的效果,最好就要加编码器反馈,在启动时精细化控制电流,减少启动热损的能量浪费,同时也保护电机与变频器不易损坏。
因此,如果变频电机编码器选型与安装得当,由于电机与变频器效率的提高,损害故障的减少,并且能真正体现变频电机的节能效果,多安装一个编码器所获得的效益是远远大于一个编码器的价格。
矢量控制模式,编码器反馈可提高加速度、力矩控制的执行力。
矢量是指有方向性的控制。电机驱动的势能保持对反电动势的势能为正时,是加速;电机驱动的势能保持对反电动势的势能为负时,是减速。
矢量控制是对电机的加减速执行力效果的精细化控制,尤其是在电机启动低速加速,和电机减速定位停止时(低速段)的执行力精准性。
以牛顿第二定律来言:F=kma;F=力;m=质量;k=惯性常数;a=加速度
加(减)速度对应电机力矩,矢量控制对应电机力矩控制的执行力。如果要达到矢量控制的精准性,需要转子加速度的精确反馈,最好由编码器作为加速度计算的反馈传感器。
有部分电机用霍尔传感器作为速度加速度反馈;也有无传感器的方案是利用电机自身线圈采样反电动势采集计算。但是,霍尔传感器和无传感器方案中,在低速时的反馈采集精度都很差,这就是说在电机启动低速时,和电机减速停止时的矢量控制没有了精度,是粗糙的控制。
安装有速度编码器的传感反馈,一般为1024PPR的脉冲反馈,精度高于霍尔传感器,或者无传感器的电机线圈自身反电动势的精度,尤其是在低速启动时的高效节能,和在减速停止时的定位执行精准度。
频电机不装编码器也行吗?当然可以。不过它就没有了低速时的速度与加速度的反馈精度,低速时驱动器控制精度也就没有了。而电机能耗在电机启动加速(低速)时最大,电机与变频器的故障损坏在电机启动加速(低速时)占50%以上。
异步伺服电机的双编码器闭环
异步伺服控制模式需双编码器闭环——异步电机加减速的响应执行力延迟与减速机精度问题。
异步电机不同于同步电机,在异步电机驱动环节没有位置闭环,是依赖速度对时间的积分得到位置。我们知道,伺服控制是指位置环、速度环、力矩环的三环闭环控制。位置环与速度环本应该是各自独立的,尽管有位置变化/时间=速度,而速度x时间=位置的计算,但是这样的计算在同步电机可行,在异步电机不可行——误差与执行响应延迟上的不同。因为是异步控制,速度反馈到执行响应的误差假设控制在千分之一以内、每秒,对于异步控制这已经是不错的精度了,那么一千秒钟的位置积分误差累加最大就可能达到了每秒误差的一千倍。(17分钟)。为此,在有的异步电机控制器里,用电机上安装的编码器直接做位置闭环计算,而不用速度环的积分得到电机位置,但这又遇到了另一个问题实际要求的工艺端在机械传动末端,机械传动与减速机的误差与延迟影响位置控制执行力问题。
禹盟自动化科技(上海)有限公司的产品主要有旋转编码器、光电编码器、磁电编码器、复合式编码器、总线编码器、绝对值编码器、增量式编码器、微型编码器等。